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Abstract. An asymptotic model was previously developed to predict behaviors of constant-rate aerosol reactors
operating with particles in the free-molecular or continuum limits. This model considered the limiting cases of
having either condensation or nucleation dominate during a nucleation burst that occurs from steady addition of
condensable monomer. In the present article, this model is generalized to allow condensation and nucleation to
both be important during a nucleation burst. Criteria are derived to predict the relative magnitudes of nucleation and
condensation, and scaling relations are presented for particle number densities, particle sizes, and onset times and
durations of nucleation bursts. Comparison of the asymptotic results with numerical integration of the governing
equations is favorable both qualitatively and quantitatively.
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1. Introduction

Nucleation and growth of particles from a vapor are important in many practical systems,
for example, with formation of particulates in the atmosphere or production of powders for
industrial use. Some systems generate condensable material over a short time period (e.g.,
shock tubes). Others continuously transfer to or generate condensable material within a zone
where appreciable nucleation occurs. These types of systems may be termed continuously
reinforced reactors, the simplest of which is the constant-rate aerosol reactor, as described by
Friedlander [1]. With the constant-rate aerosol reactor, condensable material is generated at a
constant rate within the reactor. This reactor is assumed to be spatially uniform in composition,
and to have temporally invariant temperatures and pressures (though the composition may
change with time); smog chambers can sometimes approach conditions that are representative
of constant-rate aerosol reactors [1].

In a previous paper, Shaw and Lawman [2] analyzed the constant-rate aerosol reactor using
asymptotic methods. These analyses assumed that particles were either in the free-molecular
or continuum regimes and that the aerosol was monodisperse. A variable present in nucleation-
rate expressions was treated as a large parameter, and asymptotic analyses were developed in
terms of this parameter. Scaling relations were presented for average particle sizes, particle
number densities, and onset times and durations of nucleation bursts. The theory considered
the limiting cases of having either condensation or nucleation dominate during a nucleation
burst. The generalization of this theory, which is presented in this article, allows for nucleation
and condensation to both be important during a nucleation burst.

Constant-rate aerosol reactors have been the subject of a number of other theoretical and
computational studies. For example, Friedlander [1] has presented basic theory related to
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these reactors. Friedlander [3] has also developed a set of ordinary differential equations
to model the temporal variations of the moments of the aerosol distribution as well as the
supersaturation of the condensable monomer. This model neglects coagulation and the Kelvin
effect (i.e., effects of particle size on vapor pressure) on condensation onto particles already
nucleated, but makes no assumptions about the aerosol size distribution. Pratsinis et al. [4]
have used the model of Friedlander [3] for computational studies of the characteristics of
constant-rate aerosol reactors. They performed an approximate analysis to estimate regions
of parameter space where coagulation and the Kelvin effect are safely negligible. In addition,
Pratsinis [5] has computationally studied constant-rate aerosol reactors assuming a lognormal
size distribution; Pratsinis allowed for coagulation in this analysis but did not consider the
Kelvin effect. Warren and Seinfeld [6, 7] have presented computational results assuming that
the aerosol-size distribution can be considered as monodisperse. In Warren and Seinfeld [6],
the Kelvin effect is neglected as is coagulation, while in another article [7] the Kelvin effect
is accounted for in an approximate manner. It is also noted that Shaw [8] has developed
asymptotic solutions to the model of Friedlander [3].

Rao and McMurry [9] have presented a more general computational model for constant-
rate aerosol reactors that uses a discrete-sectional approach, includes particle coagulation and
the Kelvin effect, and allows for the assumption of the applicability of classical nucleation
theory to be relaxed. This is in contrast to the other articles referenced above, which assume
the applicability of classical nucleation theory (or related equations). Rao and McMurry [9]
compared results from their model with the models of Friedlander [3] and Warren and Seinfeld
[6] and concluded that conditions can exist where all three models produce roughly the same
quantitative results as well as good qualitative agreement. This conclusion is important for
the present paper, because it lends support to the idea that particle coagulation and the Kelvin
effect may be neglected under certain conditions. It is noted, however, that Rao and McMurry
[10] have suggested that the Tolman correction to surface tension (i.e., variations in surface
tension with particle size) may decrease the validity of this conclusion, though they also state
that more work is needed in the area of particle-size-dependent surface tension to more fully
validate their predictions. In addition, as noted above, Pratsinis et al. [4] have performed
approximate analyses to determine conditions where coagulation and the Kelvin effect may
be neglected. In the present paper, particle coagulation and the Kelvin effect are not considered
in the analyses, and reactor conditions are assumed to lie within regions of parameter space
where the Kelvin effect and particle coagulation may safely be neglected. Justification for
these assumptions is presented in the following sections.

2. The governing equations

We start by presenting the evolution equations in dimensional form. Let S be the supersatur-
ation of condensable monomer (i.e., S is the ratio of the partial pressure of the condensable
monomer to its saturation pressure). Also let M represent the mass generation rate of con-
densable monomer per unit volume, R the volumetric mass rate of nucleation of critical
size clusters and C the volumetric mass rate of condensation of condensable monomers onto
clusters larger than or equal to the critical size. Utilization of the ideal gas law then yields as
the conservation equation for the mass of monomer in the gas phase, namely

m1P

kbT

dS

dt
= M − R − C. (1)
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Here, T is absolute temperature, P is the total system pressure, m1 the mass of a monomer
molecule, kb Boltzmann’s constant and t time. Nucleation is assumed to be described by the
classical theory of nucleation as described by Springer [11] such that

R = α2S2e−E/ log2 S, (2)

where α = [2ψ/(πm1)]1/2[P/(kbT )]2v1ρV, E = 16πψ3v2
1/(3kbT

3) and log denotes the
natural logarithm. Equation (2) is valid for S greater than or equal to unity. For S < 1, R = 0.
In Equations (1) and (2), ψ is the bulk liquid surface tension, v1 the volume of a monomer
molecule in the liquid phase, ρ the density of the condensed phase and V the volume of fresh
nuclei (assumed constant). If the pressure and temperature are constant, α and E are constant.

A simplification that is made in the development of the asymptotic theory is that the
diameters of freshly nucleated particles are constant. In order to apply this theory to an actual
calculation, we must select an initial diameter, or equivalently, we must select a critical cluster
number that will correspond to the number of monomers in a critical nucleus. The variable
g∗ = [4π/(3v1)][2ψv1/(kb T log S)]3 gives the number of monomers in a critical-size nuc-
leus. Examination of this expression suggests that g∗ will not vary strongly with S once the
supersaturation exceeds a value of about 3. In calculations using the asymptotic results, a
constant critical cluster number of 150 was assumed, which corresponds to S = 3·0474. It is
noted that the numerical results obtained from the asymptotic model will depend on the value
selected for the critical cluster number. They do not vary strongly, however, and qualitative
trends are essentially unaffected. As will be seen later, this selection for the critical cluster
number provides good agreement between the asymptotic results and the results obtained from
numerical integration of the more accurate model of Friedlander [3], especially for prediction
of trends.

Condensation will be modeled using

C = β(S − 1)d2Nf, (3)

where β = π [m1P/(kbT )](c1/4). Equation (3) represents the difference between the rate that
condensable vapor is absorbed by a particle and the rate that condensable vapor is evaporated
from a particle. Here, c1 is the average molecular speed of monomer molecules in the gas
phase, N the number density of condensed particles and d the average diameter of condensed
particles. For constant temperature and pressure, β is constant. The Kelvin effect has been
neglected in Equation (3). Also, the function f is given by the Fuchs-Sutugin interpolation
formula [6], which accounts for Knudsen number (Kn) effects, namely

f = 1·333Kn + 1·333Kn2

1 + 1·71Kn + 1·333Kn2 . (4)

Here, Kn = 2λ/d where λ is the mean free path for monomer molecules in the gas phase. For
this analysis we will consider the free-molecular limit (Kn >> 1) and the continuum limit
(Kn << 1).

In this analysis we are interested in the early stages where particle formation is important,
and we assume that appreciable particle coagulation occurs over long time scales and can be
neglected over short time scales associated with monomer buildup and nucleation bursts. If
coagulation is neglected, the particle number density is described by

dN

dt
= R

ρV
. (5)
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To complete the formulation of the equations we need to develop an expression for the
average particle diameter d. We will define the variable G = πρNd3/6, which represents the
total aerosol mass per unit volume and which also defines d. Based on conservation of mass,
the following differential equation applies,

dG

dt
= R + C. (6)

If the dimensionless time τ = tkbT M/(m1P), dimensionless number density n = NkbTρ

V/(m1P) and dimensionless aerosol mass density g = GkbT /(m1P) are defined, Equa-
tion (1) can be expressed for the continuum and free-molecular limits as

dS

dτ
= 1 − AS2e−E/ log2 S − B(S − 1)ganb. (7)

For Kn >> 1 it is found that B = (β/M)[6/(ρπ)]2/3[m1P/(kbT )](ρV )−1/3, a = 2/3 and
b = 1/3 while for Kn << 1 the relations B = 2·67λ(β/M)(6/π)1/3[m1P/(kbT )]ρ−1V −2/3,
a = 1/3 and b = 2/3 are found to apply. It is also noted that A = α/M is a constant.
The first term on the right-hand side of Equation (7) (i.e., unity) is the normalized and steady
volumetric mass rate of addition of monomer. The second and third groups of terms in this
equation represent dimensionless mass rates of nucleation (AS2e−E/ log2 S) and condensation
(B(S − 1)ganb).

Using the previously defined variables allows Equations (5) and (6) to be transformed to
the forms

dg

dτ
= AS2e−E/ log2 S + B(S − 1)ganb, (8)

dn

dτ
= AS2e−E/ log2 S. (9)

It is noted that the aerosol is assumed to be monodisperse but with sizes that vary with time.
Coagulation is assumed to be negligible prior to and during a nucleation burst, i.e., timescales
for coagulation are assumed to be large relative to timescales for the approach to the nucleation
burst as well as timescales associated with the duration of the nucleation burst itself. In ad-
dition, the Kelvin effect is neglected. Warren and Seinfeld [6] suggest that these assumptions
(monodisperse aerosol, negligible coagulation, negligible Kelvin effect) provide appreciable
simplifications and should not lead to large errors for predictions of behaviors prior to and
during nucleation bursts. They should be verified, however, for the particular aerosol reactor
that is to be modeled. The assumption of a monodisperse aerosol can be evaluated by com-
parison with numerical models that allow for polydisperse aerosols. Such comparisons have
been provided by other researchers (e.g., [5, 6, 9]), where it is shown that the assumption of a
monodisperse aerosol should not introduce substantial errors for prediction of characteristics
of aerosol reactors such as average particle sizes and number densities. In this paper, analytical
results assuming a monodisperse aerosol are compared with numerical integrations of the
more general model of Friedlander [3] that does not assume a monodisperse aerosol. As will
be shown later, comparisons are favorable, both quantitatively and qualitatively.

Pratsinis et al. [4] have suggested that coagulation and the Kelvin effect can safely be
ignored, provided that certain criteria are satisfied. For example, if coagulation is to be neg-
ligible over the time period �t that corresponds to the time prior to and during a nucleation
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Table 1. Model compound properties.

Property Value Units

T 298 K

W1 (Mol. Wt.) 100 kg/kmole

ψ 0·025 N/m

ns 2·43 × 1014 m−3

tcoll 45 s

ρ 1000 kg/m3

burst, �t must be small relative to the characteristic time 1/(Nζ) for coagulation, where
N is a characteristic aerosol number density and ζ is the collision frequency function. For
the Kelvin effect to be negligible, Pratsinis et al. [4] also suggest that if the dimensionless
surface tension group ψv

2/3
1 /(kbT ) has values greater than 1·5, the Kelvin effect may be

neglected without introducing appreciable errors. Relevant reactor/monomer conditions for
the situations considered in the present paper are listed in Table 1, where we have listed
conditions for a representative monomer compound investigated by Warren and Seinfeld [6]
and Pratsinis [5]. The values in Table 1 yield the result that the dimensionless surface tension
group ψv

2/3
1 /(kbT ) has a value of 1·84 for the chosen conditions such that the Kelvin effect

can be neglected. It is noted that in Table 1, tcoll represents a characteristic time between
collisions of monomer molecules at the saturation number density ns . This value for tcoll is
calculated using the kinetic theory of gases.

Classical nucleation theory is expected to break down when the characteristic time ns/Z

for production of a monomer molecule is smaller than tcoll/S [6]. If we define the dimen-
sionless monomer source rate Z′ = tcollZ/ns, where Z is the volumetric generation rate
of monomer molecules, we may roughly assume that classical nucleation theory begins to
fail if Z′ exceeds unity. In all of the calculations presented here, the variable Z′ was never
allowed to exceed unity. It is noted that by comparing their model with the simpler mod-
els of Friedlander [3] and Warren and Seinfeld [6], Rao and McMurry [9] suggest that if
25/4/(Z′)1/2 >> 1, the Kelvin effect should not be dominant, and that even when 25/4/(Z′)1/2

is of order unity errors associated with neglecting the Kelvin effect should not be overriding.
The range 2·6 < 25/4/(Z′)1/2 < 260 applies for the specific conditions examined here. Using
the above results as a guide, we only consider situations where coagulation and the Kelvin
effect are both expected to be negligible.

For many situations of interest, it is not unusual for E to have values of 102 or larger. For
example, the value E = 103·7 applies to the model compound considered here (this value of
E is used to generate all of the numerical results presented in this paper). Large values of E

cause nucleation rates to be extremely sensitive to supersaturation values, and this sensitivity
is exploited to provide the asymptotic analyses presented here.

Values for A and B are determined using the properties of the model compound listed in
Table 1 as well as consideration of relevant values for monomer generation rates. The ratios
A/B = 448·73 and A/B = 17900 were employed for the free-molecular and continuum
limits, respectively. The A and B values used to generate the numerical results in this article
are the same as used in [2] (as is the value E = 103·7). It is also noted that A is related to
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Z′ by the relation A = [2ψ/(πm1)]1/2nsT
2v2

1ρg∗/(m1Z
′). For the calculations presented in

this paper, the variable A covers the range 102 to 106, which corresponds to a Z′ range of
0·84 × 10−4 to 0·84 such that Z′ never exceeded unity.

Equations (7)–(9) are to be solved with the initial conditions that there is no condensable
vapor or any aerosol particles at time τ = 0 such that S(0) = g(0) = n(0) = 0. It is also noted
that Equations (7)–(9) are valid only for S ≥ 1; for S < 1, n = g = 0. Thus, for 0 ≤ τ ≤ 1
it follows that dS/dτ = 1, and hence S = τ for this early time period. For τ > 1, nucleation
and condensation rates are greater than zero (it is also noted that when solving the equations
it is convenient to employ the initial conditions S(1) = 1 and g(1) = n(1) = 0, which follow
from the early time behavior for τ ≤ 1). Inspection suggests, however, that the nucleation and
condensation terms on the right-hand side of Equation (7) will be negligible relative to unity
until S approaches a critical value that will be greater than unity. This critical value of S will
be attained at a critical time τc, the value of which will be dependent upon the parameters
A,B,E, a and b. Previous analysis [2] indicated that when E >> 1, the terms that describe
nucleation and condensation in the sum AS2e−E/ log2 S + B(S − 1)ganb change very rapidly
with time, and this sum approaches unity only when τc is approached very closely, at which
time the approximation S = τ breaks down.

It is to be noted that when Equations (7)–(9) are numerically integrated, solutions for S

display an initial period where S grows linearly with τ [2]. As a critical time is closely
approached, however, and the nucleation burst begins, S values level off and begin to decrease.
When S values drop slightly below the peak values attained, nucleation rates drop to negligible
levels and the nucleation burst is concluded. The analyses presented here are concerned only
with behaviors prior to and during a nucleation burst. For a description of behaviors after a
nucleation burst, further analysis is necessary.

3. Asymptotic analysis

As noted previously, Equation (7) has the approximate solution S = τ until τ approaches τc

closely. The approximation S = τ will be valid until the sum of the second and third terms in
Equation (7) approaches unity. Because E >> 1, this will generally happen rather abruptly
as a critical time τc is approached. Here, we define τc as occurring when

Aτ 2
c e−E/ log2 τc + B(τc − 1)ga

c n
b
c = 1, (10)

where gc and nc are the values of g and n at τc. We derive Equation (10) from Equation (7) by
setting dS/dτ = 0, providing a criterion for the time when the approximation S = τ becomes
invalid. A nucleation burst occurs when τ approaches τc closely. Previously [2], one term or
the other on the left-hand side of Equation (10) was assumed to be dominant. Here, we will
allow for the possibility that each is of the same order. It is noted that if Aτ 2

c e−E/ log2 τc <<

1, condensation dominates during a nucleation burst, while if (1 − Aτ 2
c e−E/ log2 τc ) << 1,

nucleation is most important during a nucleation burst.
To employ Equation (10) it is necessary to provide expressions for n and g as functions of

τ (prior to the nucleation burst). As described elsewhere [2], this can be achieved by setting
S = τ in Equations (8) and (9) and then solving the resulting equations asymptotically for
E >> 1. For the variable n, the solution procedure involves solving the following differential
equation:
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dn

dτ
= Aτ 2e−E/ log2 τ . (11)

A solution to Equation (11) can be developed by assuming a solution of the form n =
Aγ exp(−E/ log2 τ), where γ is assumed to be a function of τ . Inserting this function into
Equation (11) factors off the exponential term, yielding

dγ

dτ
+ 2E

τ log3 τ
γ = τ 2. (12)

We seek an asymptotic solution to Equation (12) for E → ∞. For τ near unity, the right-
hand-side of this equation will be of order unity. In developing the solution, we will assume
that the term 2Eγ/(τ log3 τ) remains bounded as τ → 1. A way for this to happen is if
γ ≈ τ log3 /(2E) for τ near unity. We may insert this expression into Equaiton (12) to find
that dγ /dτ is of order 1/E relative to the other terms, which leads to the expansion γ =
γ0/E + γ1/E

2 + · · · . Inserting this expansion into Equation (12) and solving the resulting
equations (which turn out to be algebraic equations and not differential equations), we have

γ = τ 3 log3 τ

2E

[
1 − 3

2E
(log2 τ + log3 τ) + · · ·

]
. (13)

Use of the leading-order term in Equation (13) then yields the following asymptotic solution
for n.

n ≈ A

2E
τ 3(log3 τ)e−E/ log3 τ . (14)

An approximate solution for the variable g can be obtained by assuming g = φn (where
n is considered known) and S = τ , yielding the following differential equation for φ when
Equation (8) is considered, namely

ε
dφ

dτ
+ 1

τ log3 τ
(φ − 1) = 
(τ − 1)φa. (15)

Here, ε = 1/(2E) and 
 = B/(2E). Equation (15) contains two parameters, ε and 
 = εB.
The parameter ε is small relative to unity and calculations indicate that 
 is of order unity
or smaller, depending on the magnitude of B, which varies with the reactor conditions. If we
treat ε as a small parameter and assume the expansion φ = φ0 + εφ1 + · · · , the following
expression is obtained for φ0 when 
 is treated as order unity where it is assumed that φ → 1
as τ → 1. The assumption that φ → 1 as τ → 1 follows from Equations (8) and (9), which
gives the result that g → 1 as S → 1 and

φ0 = 1 + B

2E
τ(τ − 1)(log τ)3φa

0 . (16)

When 
 is assumed to be O(ε), the solution φ = 1 + [B/(2E)]τ(τ − 1)(log τ)3 + · · · is
found via the expansion φ = φ0 + εφ1 + · · · . However, since Equaiton (16) reduces to this
solution for 
 → 0, Equation (16) will be employed for the remainder of the analysis.

From Equation (16), we can find g using

g ≈ nφ0, (17)

where n is determined from Equation (14).
We now have the equations necessary to calculate τc. Consideration of Equations (10),

(14), (16) and (17) produces the result that τc satisfies the following two equations:
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Aτ 2
c e−E/ log2 τcφ0c = 1, (18)

φ0c = 1 + B

2E
(τc − 1)τc(log3 τc)φ

a
0c. (19)

Equation (18) shows that φ0c = 1/(Aτ 2
c e−E/ log2 τc ) so that if φ0c >> 1, nucleation rates

are negligible relative to condensation rates in the vicinity of τc. Conversely, as φ0c → 1,
nucleation rates become increasingly important relative to condensation rates near τc. Equa-
tions (18) and (19) may be combined into the single relation

Aτ 2
c e−E/ log2 τc + B

2E
τc(τc − 1)(log3 τc)(Aτ 2

c e−E/ log2 τc )b = 1. (20)

Given values for all other parameters, Equation (20) is to be solved by iteration for τc.
More accurate solutions of Equations (11) and (12) can be obtained by use of the method

of strained coordinates [2]. This is worthwhile, since Equation (13) becomes less accurate for
large values of τ (i.e., Equation (13) is not uniformly valid), and using strained times increases
the solution accuracy for large τ . To this end, we may define the strained times s and k [2]
using

τ = s + s

2E
log3 s, (21)

s = k + s1

2E
, (22)

where

s1 =
dφ0

dk
+ φ0(k − 2) + 2

k(k − 1)

φ0 − 1

k2 log3 k

[
1 + 3

log k
+ k

k − 1

] , (23)

dφ0

dk
= φ0(φ0 − 1)

1

k
+ 1

k − 1
+ 3

k log k

φ0(1 − a) + a
. (24)

In terms of the strained times, Equations (14) and (16) are expressed as follows, where
Equation (17) is unchanged,

n ≈ A

2E
s3 (

log3 s
)

e−E/ log2 τ , (25)

φ0 = 1 + B

2E
k(k − 1)(log k)3φa

0 . (26)

If the s and k variables are used, calculation of g and n as a function of τ proceeds by
first specifying a value of k. We then solve Equation (26) iteratively for φ0, allowing s1 to
be calculated using Equations (23) and (24). The variables s and τ are then found by using
Equations (21) and (22), which allows n and g to be calculated. To find n and g values at
a specific time τ, k must be iterated. To evaluate Equation (10) when the s and k variables
are employed, we first assume a value of k and then calculate the values of g, n and τc
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that are associated with this k value. These values are substituted in the left-hand side of
Equation (10). The assumed value of k would be iterated until the terms on the left-hand side
of Equation (10) sum to unity. The strained times are employed to enable better estimates of
τc to be made. The usefulness of the strained variable approach is considered later when we
compare computational and asymptotic results.

For analysis of the solution behavior near τc, i.e., when the approximation S = τ breaks
down, we may rewrite Equations (7) and (9) in terms of appropriate stretched variables.
Based on the prior analyses, we will use the information that solution behaviors prior to the
nucleation burst are dominated by the exponential term e−E/ log2 S , which can be expressed as
e−E/ log2 τc e−E(1/ log2 S−1/ log2 τc ). If we consider only the term e−E(1/ log2 S−1/ log2 τc ), inspection
shows that for E >> 1, this term is of order unity only if S approaches τc closely. The
function 1/ log2 S may be expanded in a Taylor series about S = τc, yielding 1/ log2 S =
1/ log2 τc − 2(S − τc)/(τc log3 τc) + · · · . As a result, the function e−E/ log2 S can be expressed
as shown below.

e−E/ log2 S = e−E/ log2 τc e−E(S−τc)/(τc log3 τc)+···.

Based upon the above equation, we define the stretched variable σ = 2E(S − τc)/(τc log3 τc),
which is a rescaled supersaturation that is of order unity when τ is near τc. By expressing S in
terms of σ (i.e., S = τc + (τc log3 τc)σ/(2E)), and using this result in Equations (7) and (9),
we find that a convenient rescaled time is given by η = 2E(τ/τc −1)/ log3 τc, where η causes
changes in σ to be of order unity over changes in η of order unity, i.e., dσ/dη ≤ O(1). We will
also define ω = n/[Aτ 3

c log3 τce−E/ log2 τc/(2E)], which is the aerosol number density rescaled
to be of order unity for τ near τc, where it is to be noted that nc ≈ Aτ 3

c log3 τce−E/ log2 τc/(2E).
If we note that g = τ − S and utilize the asymptotic expansions σ = σ0 + σ1/E + · · ·
and ω = ω0 + ω1/E + · · · , we can express the leading-order terms in the expansions of
Equations (7) and (9) as

dσ0

dη
= 1 − reσ0 − (1 − r)(η − σ0)

aωb
0, (27)

dω0

dη
= eσ0, (28)

where r = Aτ 2
c e−E/ log2 τc . The variable r represents the ratio of the rate that monomers are

consumed by nucleation of fresh particles during a nucleation burst to the monomer generation
rate. Examination of Equation (27) shows that for r << 1 condensation dominates during
the nucleation burst, while for (1 − r) << 1 nucleation dominates during the nucleation
burst. When (1 − r) and r are both of order unity, condensation and nucleation rates are both
important during the nucleation burst. Setting r = 1 or 0 in Equation (27) reproduces the
equations solved by Shaw and Lawman [2] assuming that either nucleation or condensation
dominates during the nucleation burst. By generalizing the analyses of Shaw and Lawman
[2] we are now able to predict the relative magnitudes of nucleation and condensation during
a nucleation burst, which was not possible using the original analysis. Figure 1 shows the
behavior of r (obtained using Equation (20)) as a function of A for the free-molecular and
continuum limits. As might be anticipated, r approaches unity when A becomes sufficiently
small. As A grows, however, r rapidly becomes very small.

Equation (27) is to be solved subject to the matching condition lim
η→−∞ σ0 = η while Equa-

tion (28) must match Equation (25). A formal solution to Equation (28) may be written as
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Figure 1. Plots of r as a function of A. Figure 3. Plots of σ0,max, ω0,max and �η as a func-
tion of the quantity 1 − r for the free-molecular and
continuum limits.

Figure 2 Solutions of Equations (27) and (28) for the (a) free-molecular and (b) continuum limits.

ω0 = ∫ η eσ0dη + C1 which reduces to ω0 ≈ eη + C1 for η → −∞. Matching this relation to
the leading-order expansion of Equation (25) gives C1 = 0.

The nonlinear character of Equations (27) and (28) requires that solutions be found nu-
merically, which necessitates defining appropriate initial (starting) conditions. To this end, we
define θ = η − σ0. Inserting this relation into Equation (27) yields, for η → −∞

dθ

dη
= reη + (1 − r)θaeηb. (29)

where ω0 = eη for η → −∞ has been used. Equation (29) has the solution θ = eη, where we
have used the relation a + b = 1. We may then deduce that σ0 ≈ η − eη for η → −∞. Use of
this asymptotic relation for σ0 (as well as that provided above for ω0) as a starting condition
is necessary for developing accurate numerical solutions. When the numerical solutions were
determined, the starting η value was varied until the results were independent of this value.

Figure 2 shows solutions of Equations (27) and (28) for the free molecular and continuum
limits and for different values of r. These solutions, as well as all other numerical integrations
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presented in this paper, were generated with a fourth-order Runge-Kutta scheme. In employing
this scheme, we varied the time steps until time-step independent results were obtained. The
Rung-Kutta scheme was implemented using double precision FORTRAN.

As might be anticipated, solutions for r near unity display an extended period of time for
the nucleation burst, i.e., dω0/dη is appreciable for long durations. For r = 1 we may obtain
the exact solutions σ0 = − log(1 + e−η) and ω0 = log(1 + eη), showing that for this case, ω0

grows without bound as η increases. When r < 1, a limited period of time (�η) is obtained
where ω0 grows rapidly; outside of �η, changes in ω0 are negligible. The period �η may be
considered to be the duration of the nucleation burst. From Figure 2, it is evident that for the
continuum and free-molecular limits, appreciable nucleation occurs roughly when σ ≥ −2;
when σ0 < −2, changes in ω0 are small. From the definition of the stretched time η, we may
estimate the duration of the nucleation burst as

�τ ≈ τc log3 τc

2E
�η, (30)

where �η is defined to be the stretched time period where σ0 ≥ −2. Plots of �η as a function
of (1 − r) are shown in Figure 3.

Figure 3 also shows maximum values of ω0 and σ0 (i.e., ω0,max and σ0,max) as a function
of (1 − r) that were calculated from numerical solutions of Equations (27) and (28) (note
that the negative of σ0,max is actually plotted). This figure is useful in that it allows estimates
for the maximum supersaturation values (Smax) and final particle number densities (ntot) to be
obtained from the asymptotic theory. From the definitions of the stretched variables σ and ω,
we may derive the expressions,

Smax ≈ τc

(
1 + log3 τc

2E
σ0,max

)
, (31)

ntot ≈ τ 3
c log3 τc

2E
Ae−E/ log2 τcω0,max, (32)

which contain the variables σ0,max and ω0,max. Results using Equations (31) and (32) are shown
in Figures 4 and 5, respectively. Also plotted are calculations of Smax and ntot obtained from
direct numerical integration of Equations (7)–(9). In these figures, the term ‘leading-order
theory’ refers to the asymptotic theory where the approximation τ = s = k is used and
Equation (20) is used to calculate τc, while the term ‘higher-order theory’ refers to calculating
τc using the strained times s and k (with values different from τ ) and employing the resulting
value for r in Equations (27) and (28). The higher-order theory results for the most part fall
closer to the numerical integration results than do the leading-order results. In general, the
numerical and asymptotic solutions agree well over the range of A values considered, and
in some cases it is difficult to distinguish between the numerical and asymptotic solutions.
This is in contrast to the original research presented by Shaw and Lawman [2], where the
continuum-limit solutions became invalid as A decreased in magnitude. This occurred because
the original theory did not allow for the parameter r to have values between zero and unity.

Finally, as shown by Shaw and Lawman [2], the average particle diameter (d) may be
expressed as

d = d0(g/n)1/3 ≈ d0φ
1/3
0 , (33)
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Figure 4. Plots of Smax as a function of A for the free-
molecular and continuum limits.

Figure 5. Plots of ntot as a function of A for the free-
molecular and continuum limits.

where d0 is the diameter of freshly-nucleated particles (taken as constant). Equation (33) is
valid prior to the nucleation burst (i.e., for τ appreciably less than τc). If we express the ratio
g/n in terms of η, σ , and ω and expand the result in powers of 1/E, we obtain the following
equation to describe particle size variations during a nucleation burst

d

d0
r1/3 ≈

(
η − σ0

ω

)1/3

. (34)

For r = 1, the exact solution presented earlier gives [(η − σ0)/ω0]1/3 = 1. Numerical integra-
tions show that over the duration of a nucleation burst (i.e., when σ0 ≥ −2), [(η − σ0)/ω0]1/3

does not depend strongly on r, even as r → 0. For example, when r = 0, [(η − σ0)/ω0]1/3

is calculated to have values of 1·45 and 1·43 for the free-molecular and continuum limits,
respectively, when σ0 = −2 at the end of the nucleation bursts (at the beginnings of the
nucleation bursts, [(η−σ0)/ω0]1/3 is very close to unity for the free-molecular and continuum
limits for all values of r). As r becomes larger, values of [(η−σ0)/ω0]1/3 become smaller and
approach unity. Hence, the average particle size during a nucleation burst is approximately
d0r

−1/3. From the definition of r, it can be seen that the functional form of this prediction for
the average particle size during a nucleation burst is precisely the same as provided by Shaw
and Lawman [2]. There is a significant difference between the two results, however, since the
analysis presented in this paper allows for accurate prediction of r (and hence τc) when r is
not small relative to unity. The previous theory was not valid as r approached a value of unity,
while the theory presented here is valid for all values of r.

4. Comparison with a more accurate numerical model

In this section we compare the asymptotic results with a model advanced by Friedlander [3]
for the dynamics of batch aerosol reactors operating in the free-molecular limit. This model
provides evolution equations for the first three moments of the aerosol size distribution, and
includes the effects of nucleation and condensation. In this model, the Kelvin effect is assumed
to be negligible, as is coagulation of particles. However, no restrictions are placed upon the
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Figure 6. Plots of S as a function of τ obtained from
integrating Equations (35)–(38).

Figure 7. Plots of the number density N as a function of
τ obtained from integrating Equations (35)–(38).

aerosol size distribution (it is allowed to evolve as determined by the conservation equations),
and the critical nucleation diameter d∗

p, at which stable particles were nucleated, is allowed to
vary according to the Kelvin relationship, namely, d∗

p = 4ψv1/(kb T log S). The equations
describing Friedlander’s model are summarized below.

dAt

dt
= J (g∗)2/3A1 + 2πB1(S − 1)M1, (35)

dM1

dt
= Jd∗

p + B1(S − 1)N, (36)

dS

dt
= Z

ns

− Jg∗

ns

− (S − 1)
B1At

2v1ns

, (37)

dN

dt
= J. (38)

Here, At is the total particle surface area per unit volume, M1 is a moment of the aero-
sol size distribution, B1 = 2nsv1[kbT /(2πm1)]1/2, A1 is the surface area attributed to a
monomer molecule in the liquid phase, and J is the particle nucleation rate. In the calcula-
tions, the particle nucleation rate was assumed to be described by classical nucleation theory
such that J = {[2ψ/πm1]1/2n2

s v1}S2 exp(−E/ log2 S) where E is as previously defined in
the asymptotic theory. Equations (35)–(38) were integrated numerically using a fourth-order
Runge-Kutta scheme subject to the initial conditions S(1) = 1, N(1) = 0, M1(1) = 0, and
At(1) = 0. Results from these numerical integrations are compared below with the asymptotic
models. It is noted that Equations (35)–(38) have not been rendered dimensionless.

The conditions under which Equations (35)–(38) were integrated correspond to the model
compound considered by Warren and Seinfeld [6] and by Pratsinis [5] (Table 1). Shown in
Figure 6 are values for the supersaturation S plotted as a function of the dimensionless time
τ = tZ/ns; this definition of τ is identical to that employed earlier in this paper. These results
were obtained by numerically integrating Equations (35)–(38). The qualitative features are
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Figure 8. Comparison of predictions of the peak super-
saturation Smax obtained from the asymptotic models
as well as numerical integrations of the monodisperse
aerosol model (Equations (7)–(9)) and numerical integ-
rations of Equations (35)–(38).

Figure 9. Comparison of predictions of the final num-
ber density Ntot obtained from the asymptotic models
as well as numerical integrations of the monodisperse
aerosol model (Equations (7)–(9)) and numerical integ-
rations of Equations (35)–(38).

similar to what are found when the conservation equations describing monodisperse aerosols
are numerically integrated [2]. For example, an initial period exists where S grows linearly
with τ . This period is terminated rather abruptly when the supersaturation peaks sharply and
then begins to decrease. Figure 7 shows calculated histories for particle number densities
obtained by numerically integrating Equations (35)–(38). As would be anticipated, the number
densities grow very rapidly until S peaks. After the supersaturation peaks, number densities
then remain essentially constant because nucleation rates decrease in magnitude extremely
rapidly as S values drop even slightly.

Figure 8 shows predictions for the peak supersaturation Smax attained as a function of
the parameter A. Plotted in Figure 8 are numerical integrations of the Friedlander model
(Equations (35)–(38)) and the leading-order and higher-order asymptotic results, as well as
numerical integrations of Equations (7)–(9). The various models agree well, especially as the
parameter A increases in magnitude, which corresponds to decreasing magnitudes of Z′.

Figure 9 shows plots of the final number density attained (Ntot) as a function of A, where
Ntot has units of particles per cubic meter. Plotted are results obtained from numerical integra-
tions of the Friedlander model (Equations (35)–(38)) and the leading-order and higher-order
asymptotic results, as well as numerical integrations of Equations (7)–(9). In general, agree-
ment between the various models is good, especially regarding qualitative trends over about
eight orders of magnitude in predictions for number densities. Also, the quantitative results
compare well with the lowest-order theory predicting final number densities that are typically
within a factor of five of the results obtained from the Friedlander model; the higher-order
theory as well as numerical integrations of Equations (7)–(9) are even closer.

Table 2 provides results for predictions of average particle diameters obtained from the
leading-order and higher-order asymptotic theories and also from the Friedlander model.
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Table 2. Comparison of average particle diameters from the asymptotic theories using the rela-
tion d0r−1/3 and Equations (35)–(38). Listed are values of the parameter r and average diamet-
ers (d). The subscripts TH1, TH2 and F refer to results obtained from the leading-order theory,
the higher-order theory, and Friedlander’s model, respectively. The value d0 = 3·62 × 10−9 m
was used in these calculations.

A rTH1 rTH2 dTH1(m) dTH2(m) dF(m)

102 1·22 × 10−2 4·11 × 10−2 1·57 × 10−8 1·05 × 10−8 7·75 × 10−9

104 9·44 × 10−6 2·27 × 10−5 1·71 × 10−7 1·28 × 10−7 8·37 × 10−8

106 8·32 × 10−10 1·52 × 10−9 3·85 × 10−6 3·15 × 10−6 1·98 × 10−6

The average diameters listed for the Friedlander model correspond to average diameters that
existed when the peak supersaturation Smax was achieved. The average diameters for the Fried-
lander model (dF ) were defined using the relation dF = [At/(πN)]1/2. The results listed in
Table 2 indicate that the leading-order and higher-order asymptotic theories predict average
particle diameters to within a factor of two for the particular problem considered. It is noted
that the r values listed are all small relative to unity. These are the values that happened to
occur for the particular conditions investigated. Other conditions may lead to r values that are
of order unity.

The results listed in Table 2 were obtained assuming that particles were always within
the free-molecular regime. For this to hold true, it is easily calculated that total aerosol reactor
pressures must actually be quite low (a few Torr) for the largest particles considered; the smal-
ler particles can withstand higher reactor pressures before the assumption of a free-molecular
aerosol is violated.

For coagulation to be negligible, the timescale �t for the onset and duration of the nucle-
ation burst must be smaller than the characteristic time for coagulation [1/(Nζ)]. Estimates
suggest that �t << [1/(Nζ)] for all of the calculations performed here. In making these
estimates, ζ values for collision rates between hard spheres in the free-molecular limit [3]
were used, where the spheres were assumed to have the diameters and number densities in
Table 2 and Figure 9, respectively.

5. Conclusions

We have extended an asymptotic model that was developed to predict behaviors of constant-
rate aerosol reactors operating with particles in the free molecular or continuum limits. This
previous model was restricted to situations where either nucleation or condensation was dom-
inant during a nucleation burst, but not both. This model has been generalized to cover the
situation where both condensation and nucleation may be appreciable during a nucleation
burst. The analysis identified the parameter r, which represents the ratio of the volumetric
mass nucleation rate to the volumetric mass generation rate of monomers, as being important
in determining behaviors during a nucleation burst. When r is small relative to unity, con-
densation dominates during a nucleation burst. Conversely, when r closely approaches unity
nucleation is dominant during a nucleation burst. When r is between these limits, nucleation
and condensation are both important during a nucleation burst.
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The analyses have also provided improved scaling relations for particle number densities,
average particle sizes, and onset times and durations of nucleation bursts. Results using these
scaling relations showed that the parameter r plays an important role in determining factors
such as nucleation burst durations.

In general, the asymptotic models compared favorably with direct numerical integrations
of the governing equations for a monodisperse aerosol. Good agreement was also obtained
when the asymptotic results were compared with numerical integrations of an aerosol model
that allowed for polydisperse aerosols in the free-molecular regime. For example, good agree-
ment was obtained regarding particle number densities, average particle sizes and maximum
supersaturation values obtained during nucleation bursts.

It is to be recalled that the equations presented were derived assuming that particles are
either in the free molecular or continuum regimes, that the Kelvin effect is negligible, and
that coagulation is negligible over the timescales associated with the onset and duration of a
nucleation burst. These assumptions should all be checked if the results presented here are
applied to any particular situation.

This paper can be extended in several ways. For example, it would be worthwhile to extend
the analyses to consider situations where the Kelvin and Tolman effects are significant. It
would be interesting to consider variable monomer generation rates, which might occur when
the chemical reactions that generate monomers vary with time. The analyses presented here
have assumed that aerosol reactors are spatially uniform. It would be useful to consider situ-
ations where aerosol formation occurs in reactors that have spatial variations (both transient
and steady state), such as in a laminar or turbulent jet. Finally, the model could be extended to
include variable particle nucleation diameters. This would increase the accuracy of numerical
results obtained using the asymptotic model.
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